
0

Exploring Energy Scalability in Coprocessor-Dominated
Architectures for Dark Silicon

Qiaoshi Zheng, University of California, San Diego / Northwestern Polytechnical University, China
Nathan Goulding-Hotta, University of California, San Diego
Scott Ricketts, University of California, San Diego
Steven Swanson, University of California, San Diego
Michael Bedford Taylor, University of California, San Diego
Jack Sampson, University of California, San Diego / The Pennsylvania State University

As chip designers face the prospect of increasingly dark silicon, there is increased interest in incorporating energy-efficient
specialized coprocessors into general-purpose designs. For specialization to be a viable means of leveraging dark silicon, it
must provide energy savings over the majority of execution for large, diverse workloads, and this will require deploying
coprocessors in large numbers. Recent work has shown that automatically-generated application-specific coprocessors can
greatly improve energy efficiency, but it is not clear that current techniques will scale to coprocessor-dominated architec-
tures (CoDAs) with hundreds or thousands of coprocessors.

We show that scaling CoDAs to include very large numbers of coprocessors is challenging because of the energy cost of
interconnects, the memory system, and leakage. These overheads grow with the number of coprocessors and, left unchecked,
will squander the energy gains that coprocessors can provide. The paper presents a detailed study of energy costs across
a wide range of tiled CoDA designs and shows that careful choice of cache configuration, tile size, coarse-grain power
management, and transistor implementation can limit the growth of these overheads. For multi-threaded workloads, designers
must also take care to avoid excessive contention for coprocessors, which can significantly increase energy consumption. The
results suggest that, for CoDAs that target larger workloads, amortizing shared overheads via multithreading can provide up
to 3.8× reductions in energy per instruction, retaining much of the 5.3× potential of smaller designs.

Categories and Subject Descriptors: C.1.3 [Other Architecture Styles]: Heterogeneous (hybrid) systems

General Terms: Design, Performance

Additional Key Words and Phrases: CoDA, Coprocessor, Conservation Core, Dark Silicon, Energy-efficiency, Scalable Spe-
cialization

ACM Reference Format:
Qiaoshi Zheng, Nathan Goulding-Hotta, Scott Ricketts, Steven Swanson, Michael Bedford Taylor, and Jack Sampson, 2013.
Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon. ACM Trans. Embedd. Comput. Syst.
0, 0, Article 0 (2013), 22 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
The end of Dennard scaling [Dennard et al. 1974], combined with fixed power budgets, has re-
sulted in designs where larger and larger fractions of a chip’s silicon area must remain inactive in
order to stay within its power budget. This dark silicon results from the utilization wall [Venkatesh

This work was partially supported by NSF Awards 06483880, 0846152, 0811794, 1018850, 0811794, and 1228992, and by
C-FAR, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.
Author’s addresses: Q. Zheng and N. Goulding-Hotta, Computer Science and Engineering Department, University of Califor-
nia, San Diego; Scott Ricketts, (Current address) Nvidia; S. Swanson, and M.B. Taylor, Computer Science and Engineering
Department, University of California, San Diego; J. Sampson, (Current address) Computer Science and Engineering Depart-
ment, The Pennsylvania State University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2013 ACM 1539-9087/2013/-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:2 Q. Zheng et al.

et al. 2010; Goulding et al. 2010; Esmaeilzadeh et al. 2011; Hardavellas et al. 2011; Taylor 2012;
2013; Govindaraju et al. 2012; Semiconductor Industries Association 2012]: the observation that the
percentage of a chip that can switch at full frequency is dropping precipitously with each process
generation.

As progressively decreasing portions of a chip’s transistors can be fully utilized, silicon area
becomes cheaper relative to power and energy consumption. This shift calls for new architectural
techniques that trade dark silicon area for energy efficiency. One such technique is the use of special-
ized coprocessors. Specialized coprocessors are becoming commonplace across smartphone, tablet,
and desktop chips. These chips now include diverse functions such as H.264 accelerators, Viterbi
baseband processing blocks, and cascade-based Face Detection pipelines. This trend will continue
to accelerate as energy efficiency continues to drive processor design.

Dark silicon is a plentiful resource now and will become more so. As a result, chip designers can
include many of these coprocessors, each one specializing to an even greater degree for a smaller
fraction of the workload. This specialization can target both energy savings [Venkatesh et al. 2010]
and/or performance [Clark et al. 2008]. Recent work [Goulding et al. 2010; Hardavellas et al. 2011]
has proposed using dark silicon to implement a host of specialized coprocessors, each of which is
a factor of ten or more energy-efficient than a general-purpose processor. Although prior work has
explored the effectiveness of coprocessor-enabled systems for single applications or small, targeted
workloads, to be generally useful these coprocesor-enabled systems must realize savings across
broad and diverse workloads, which means scaling to workloads featuring dozens or even hundreds
of applications.

As the number of coprocessors scales up, these designs will transform from coprocessor-enabled
systems to coprocessor-dominated architectures (CoDAs). In CoDAs execution hops among copro-
cessors and general-purpose cores depending on which is most efficient for the current task, while
unused components enter deep low-power modes. Area budgets at the 22 nm node and beyond will
provide sufficient transistor resources to build CoDAs that contain hundreds or thousands of co-
processors, enabling designers to target higher coverage over ever larger workloads. The larger the
fraction of the workload that the specialized coprocessors can cover, the larger the potential increase
in overall efficiency that CoDAs can provide.

However, designing scalable CoDAs will raise numerous architectural challenges. Energy con-
sumption from integration overheads grows as CoDAs scale, eroding potential savings. Although
each coprocessor can improve performance and/or efficiency in isolation, assembling many copro-
cessors into a single architecture causes expansion of the on-chip interconnect and increases the
complexity of the memory system. So much of the chip is idle (i.e., dark) at any moment that
leakage energy from idle components is a much larger problem for dark silicon systems than for
conventional designs. Increasing coprocessor counts can increase the frequency of migration be-
tween them, adding migration overheads and impacting cache performance. If designers are not
careful, these inefficiencies can overshadow the benefits that the coprocessors provide.

CoDAs also raise questions with respect to application coverage and the usage model for copro-
cessors. Traditional coprocessors target a few, key applications (e.g., video decoding). However, in
a CoDA, almost all applications will be using coprocessors, and multi-threaded applications may
use several at once. If applications compete for a particular coprocessor, then either performance or
efficiency will suffer, as the losing thread either waits for access to the coprocessor or falls back to
executing on a general-purpose core. For multi-threaded workloads, these conflicts can dramatically
reduce the efficiency of CoDAs.

This paper systematically explores the design space for CoDA systems to observe how CoDA
efficiency scales with larger and highly multi-threaded workloads. We survey CoDA designs to
understand the impact of both high-level architectural decisions (e.g., cache sizes and the number
of coprocessors) and low-level implementation choices (e.g., the type of transistors to use and how
to manage power gating). Then, we measure the impact of running concurrent threads on a CoDA,
and explore methods for reducing the impact of competition for contended coprocessors.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 0:3

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1
CPU

L1

CPU

L1
CPU

L1

CPU

L1
CPU

L1

CPU

L1
CPU

L1

Voltage Domain

L2 CacheL2 Cache

L2 Cache L2 Cache

Fig. 1. Prototypical CoDA The prototypical CoDA comprises a set of tiles, each of which contains a host CPU,
on-chip network interface, multiple coprocessors, and a shared, coherent L1 data cache. At coarser granularity,
the CoDA comprises several voltage domains, each containing one or more tiles. One L2 is present for each
voltage domain.

This paper shows that the main limiter on the efficiency of larger CoDAs is the efficiency of the
other on-chip components and the leakage through dark silicon. In particular, we show that:

— Without aggressive power management, leakage precludes efficiency benefits from large
CoDAs, and we show that, even with aggressive power management, leakage is still a siz-
able fraction of CoDA energy that grows with coprocessor count. In a CoDA, the leakage of
the inactive components can be higher than the dynamic power of the active components. Despite
this, we also show that CoDAs can still scale to workloads requiring hundreds of coprocessors
while retaining 3.5× efficiency gains.

— CoDAs must have efficient power management, networks, and memory systems in order to
retain high overall efficiency as they scale. Our results provide a roadmap for how improvements
in power management, network, and memory system efficiency would improve CoDA efficiency.
In particular, the results provide strong motivation for mechanisms to render dark silicon truly
dark. For multi-threaded workloads, the results suggest that the impact of threads competing for
coprocessors can be mitigated with only a modest increase in area.

— A scalable CoDA design approach can continue to deliver superior efficiency even for large
workloads. The study suggests that a CoDA design approach that can deliver 5.3× improvements
in energy efficiency and 5.0× improvements in energy-delay product for small workloads could
continue to yield improvements of 3.7× in energy and 3.5× in energy-delay for designs covering
over 100 applications.

The rest of this paper proceeds as follows: Section 2 describes the CoDA and coprocessor ar-
chitectures we use in this work and the workload we target. Section 3 describes the model we use
to evaluate potential CoDA designs. Section 4 explores the design space of energy consumption in
CoDA designs, and Section 5 addresses issues related to multithreading. Finally, Section 6 reviews
related work, and Section 7 concludes.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:4 Q. Zheng et al.

...

...

Memory

On-Chip Network Interface

L1
D-CACHE

Host

Processor

I/O

C
o

p
ro

c
e

s
s
o

r

C
o

p
ro

c
e

s
s
o

r

C
o

p
ro

c
e

s
s
o

r

C
o

p
ro

c
e

s
s
o

r

C
o

p
ro

c
e

s
s
o

r

Active

Idle (inactive elements
covering current

application)

Sleeping
 (inactive coprocessors
for other applications)

Fig. 2. Tightly-coupled coprocessor integration Coprocessors in CoDAs share the data cache and use the same
memory model as the general-purpose host processors. The memory and CPU-to-coprocessor networks are
circuit-switched and allow only one active coprocessor at a time.

2. CODA ARCHITECTURE AND WORKLOAD
A scalable approach to building CoDAs needs to accommodate designs with hundreds or thousands
of coprocessors that target a wide range of applications. In this section we describe the type of
coprocessors we will target in this work and introduce a class of heterogeneous, tile-based architec-
tures that will allow designers to build (and us to evaluate) CoDA designs covering a wide range of
sizes. Although our approach to evaluating CoDAs is independent of the internal architecture of the
coprocessors, for simplicity, we will focus on a single style of coprocessor design. This section also
describes the workload we use to guide the design of the CoDAs we evaluate in later sections.

2.1. Architecture
Figure 1 provides a high-level view of the CoDAs this paper examines. These CoDAs are heteroge-
neous, tiled designs. Each tile contains one general-purpose host processor, coherent L1 instruction
and data caches, a dynamic routing network switch, and many specialized coprocessors. The chip
also contains one or more shared L2 caches. The tiles communicate with each other and the L2
caches via a point-to-point, wormhole-routed mesh network that uses physical rather than virtual
channels.

Figure 2 shows the connections among the components within a single tile. Only one processing
element on a tile, either the host processor or one of the coprocessors, can be active at one time, so
we can use a scalable, circuit-switched tree-based interconnect between the cache and coprocessors.
The other coprocessors will either be idle, if they are associated with a currently running application,
or power-gated if they are not associated with any scheduled application. The thread associated with
a tile can make use of any of the coprocessors on that tile. To utilize other coprocessors, the thread
must migrate to the tile containing those coprocessors.

L1 access latency is a function of both the number of coprocessors in a tile and the distance
between a given coprocessor and the L1. L1 access latency is critical to performance, so this can
limit the performance scalability of larger tiles. In practice, not all coprocessors on a tile or tiles
in a CoDA will place an equal demand on the memory interface or have equivalent sensitivity to
memory latency. Rather than use a multiplexing solution that provides uniform latency to memory,
CoDAs use profiling to organize coprocessors with higher traffic and more latency-sensitive copro-

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 0:5

cessors closer to the L1 data cache. This saves wire and muxing energy and minimizes performance
degradation due to wire delay.

The host processor on each tile is a compact, energy-efficient in-order processor optimized for
efficiency and fast wakeup from deep sleep. By design, CoDAs only execute code on the host pro-
cessor infrequently. Thus, its performance is less critical than its simplicity because there will be
as many host processors as there are tiles. The processor in our design is based on the MIPS-like
processor in [Taylor et al. 2004]. The general-purpose host processor controls the coprocessors via
a tree-based interconnect that also provides access to the coprocessors’ internal state.

Our architecture breaks the array of tiles into multiple voltage domains (the dotted boxes in
Figure 1). Each domain contains several tiles and a shared L2 cache. Each domain has its own
power rail controlled by an off-chip voltage regulator. This allows domains to completely power
off when they are not in use, but it means that threads may not benefit from the L2 resources of
other domains. For the purposes of this paper, we assume it takes hundreds of µs to flush caches and
power down or power up a domain, so changing which domains are active would only occur at OS
scheduling timescales.

CoDAs can employ deep-sleep power gating at OS scheduling timescales, reconfiguring the pow-
ered regions of coprocessors at application granularity. Efficiently managing numerous inactive el-
ements requires that they are in a deeply power-gated sleep state by default, and that the OS config-
ures shared resources proportional to concurrency and not to connectivity. Since the coprocessors
that an application may request are highly predictable and highly specific to that application, this
can be a low-frequency event and is therefore compatible with the timescales of both current [Jot-
wani et al. 2010] and more aggressive proposed [Henry and Nazhandali 2010; Henry et al. 2011;
Dadgour and Banerjee 2007] power-gating techniques.

2.2. Executing in CoDAs
A program executing in a CoDA system migrates between coprocessors and general-purpose pro-
cessors. To orchestrate transitions, a CoDA-aware compiler replaces functions that a coprocessor
implements with a “stub” that will invoke the specialized hardware if it is available or execute the
original function in software if it is not. From the perspective of the rest of the program, the stub be-
haves exactly like the original function. This similarity is intentional and fundamental to the vision
of the CoDA design paradigm. The particular hardware in a given CoDA is compiler visible, but not
programmer visible, and the dynamic check for hardware allows CoDAs to deal with contention,
defective components, and legacy code or hardware.

When multiple programs or threads are running concurrently in a CoDA they can compete for
coprocessors. To manage this contention, the stub function checks if the desired coprocessor is
available and reserves it before transitioning to it. If the coprocessor is not available, the stub invokes
the original version of the function that runs on a general-purpose processor. If the coprocessors used
in the CoDA support context switching (like conservation cores [Venkatesh et al. 2010; Sampson
et al. 2011], described below), then the CoDA compiler will generate compensation code so that an
execution begun in a coprocessor may finish in software if necessary.

2.3. Coprocessor selection and coverage
There are many types of coprocessors that a designer could choose to include in a CoDA, offering
a wide variety of design tradeoffs in terms of performance, energy savings, and coverage poten-
tial. Since engineering effort is a primary barrier to the creation of coprocessors, CoDAs using
automatically-generated coprocessors will have greater scalability across many diverse codebases.
In order to examine the scalability limits of CoDAs, we conservatively restrict ourselves to only
those types of coprocessors that we can generate from arbitrary code. We therefore focus this study
on automatically-generated coprocessors that attain substantial energy-delay product improvements
without the use of complex pointer analysis and code transformations. That said, our framework
remains applicable to many different kinds of coprocessors, so long as they are tightly coupled to
the host processor and to each other through a shared memory as shown in Figure 2.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:6 Q. Zheng et al.

Conservation cores (c-cores) [Venkatesh et al. 2010] are a class of automatically-generated, en-
ergy reducing coprocessors that meet the aforementioned requirements. Since it is possible to auto-
matically generate a c-core for almost any function, it is possible to leverage a large number of them,
and we use c-cores as the model for coprocessors in this study. Previous work [Sampson et al. 2011;
Goulding et al. 2010; Venkatesh et al. 2011] has shown that c-cores can offer up to 10× reduction
in energy (30× more efficient for non-memory operations [Goulding et al. 2010], and 10× overall)
and 23× improvement in energy-delay compared to the same code running on an in-order general-
purpose processor. C-cores focus on saving energy rather than directly improving application speed.
However, by lowering energy per instruction, c-cores do allow greater concurrency within the same
power budget.

Each c-core covers a specific portion of a target program, and an automated toolchain generates
the c-cores directly from program source code. The general-purpose processors handle remaining
cold code regions. During execution, threads migrate between the general-purpose core and c-cores
to minimize energy-delay-product (EDP). Since c-cores are individually far more efficient than a
CPU, the energy of optimized regions all but disappears, and system energy savings are more-or-
less proportional to the coverage attained, in accordance with Amdahl’s Law. In an idealized CoDA
system, as the area dedicated to c-cores increases to provide increasing coverage of the workload,
the energy per operation would correspondingly improve.

The c-core toolchain generates c-cores as follows. First, the toolchain performs profiling to lo-
cate hot code regions. Then, each hot code region is decomposed into a collection of basic blocks
or hyperblocks (for recognized switch statements). C-cores use a spatial computation approach,
and create dedicated functional units for each operator within each block. At the same time, the
toolchain also creates the c-core control logic, which is a state machine that sequences the blocks.
Collectively, the assorted datapaths for the hot region and the associated control logic comprise a
single c-core, which often corresponds to an outer loop or function. As an optimization, however,
c-core compilation will outline cold code within hot loops and functions as exceptional cases to be
handled by the host processor. Since the c-cores do not algorithmically change the target region,
executing the all or part of the original region in software on the host processor instead of the c-core
is still possible.

C-cores use the same memory model as the host processor, and share the L1 data cache with both
the host processor and the other c-cores, as seen in Figure 2. To minimize communication costs
across c-core to c-core boundaries, we profile memory communication among application hotspots
hierarchically and provide this as an input to both c-core selection and CoDA placement. C-cores
use techniques including selective de-pipelining and cachelets [Sampson et al. 2011] to minimize
area and energy costs while maximizing performance.

2.4. Applications
The selection of coprocessors in a CoDA depends on the set of applications it targets. Our goal is
to understand how CoDAs scale from designs with a handful of coprocessors to designs featuring
hundreds of coprocessors, so we need a correspondingly broad set of applications to target.

Our workload generator employs a set of “seed” applications from SPEC 2006 [Standard Perfor-
mance Evaluation Corporation 2006], SPEC 2000 [Standard Performance Evaluation Corporation
2000], and EEMBC [Embedded Microprocessor Benchmark Consortium 2002] and modifies their
properties to model a greater span of program characteristics. Table I lists the applications and
properties of the c-cores that target them. This set of seed applications was characterized via 22
automatically-generated c-cores that were run all the way to placed-and-routed netlists and simu-
lated at the gate level with detailed parasitics.

To generate larger workload sizes and model the potential c-cores to cover them, the workload
generator replicates each application 2, 4, 8, and 16 times and adjusts the area for each of the result-
ing c-cores by up to 50% to provide variability in hotspot code density. This produces a generated
workload of 16, 32, 64, and 128 applications in addition to the original 8 application workload. The

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 0:7

Workload Description 22 nm C-core
Area (mm2)

astar [Standard Performance Evaluation Corporation 2006] pathfinding 0.044
bzip2 [Standard Performance Evaluation Corporation 2000] data compression 0.329
cjpeg [Independent JPEG Group 2002] jpeg encoding 0.076
crafty [Standard Performance Evaluation Corporation 2000] chess 0.580
djpeg [Independent JPEG Group 2002] jpeg decoding 0.118
gzip [Standard Performance Evaluation Corporation 2000] compression/decompression 0.190
mcf [Standard Performance Evaluation Corporation 2000] multi-commodity flow 0.056
viterbi [Embedded Microprocessor Benchmark Consortium 2002] convolutional decoding 0.039

Table I. Applications The workload generator modifies the properties of these eight seed applications to gen-
erate workloads of up to 128 cores. The c-core toolchain created 22 placed-and-routed c-cores for the seed
applications in order to provide accurate characterization.

largest of these workloads requires 352 c-cores to achieve more than 97% coverage. The CoDA
containing these 352 c-cores would require 74 mm2 in a 22 nm process technology.

3. MODELING CODAS
Among the aims of this paper is to develop an understanding of the CoDA approach in sufficient
depth to derive insights about the energy scalability of CoDAs. However, there are many possi-
ble CoDAs, and fully synthesizing and simulating all of the CoDA designs we will consider is
intractable, so this paper employs an analytical model for CoDA performance, area, and energy
efficiency.

3.1. Methodology
Our analytical model is driven by three primary components. First, we use the properties of fully-
synthesized CoDA subcomponents as inputs to our model. Then, we perform trace-driven analysis
of our workloads to develop our model of dynamic program behavior, including migration and cache
coherence effects. Finally, we use the data gathered from the above studies across entire workloads,
scale to a 22 nm process, and provide breakdowns for the energy, area, and performance properties
of the resulting CoDA.

We use Synopsys Design Compiler, IC Compiler, and PrimeTime as our tools to measure the
fully-synthesized, placed-and-routed c-cores for a subset of the hot regions in the applications in
Table I. We build these coprocessor components individually and use the fully-synthesized placed-
and-routed netlist for the general-purpose host processor to inform our model. We synthesize these
designs using TSMC 45 nm G and 40 nm LP technology nodes, and then scale to derive their
properties at other design points.

To collect data about program behavior, we use LLVM [Lattner and Adve 2004] to annotate an
executable, in order to map different parts of execution to c-cores and general-purpose processors.
Each execution simulates a particular mapping of regions of code to particular tiles on a CoDA
and either the host or a coprocessor on that tile. The annotated executables provide a detailed trace
of memory operations, including coherence messages, cache-to-cache transfers, and NoC segments
traversed, as well as transitions between c-core and non-c-core execution. Aside from these over-
heads, we model the progress of execution at one cycle per instruction. The annotated binaries
output summaries of these key statistics as inputs for our analytical model.

3.2. Model parameters

Wire length = 2
n∑

i=1

√
Component Areai, i ∈ every component along the path (1)

Several parameters in our analytical model come directly from existing literature or are scaled
from actual 40/45 nm measurements to 22 nm. Table II lists the key parameters. To calculate wire

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:8 Q. Zheng et al.

Model Parameter Source of Values
Wire energy per mm Bill Dally’s 2009 DAC keynote

Host processor energy Host energy per instruction from [Goulding et al. 2010],
scaled to 22 nm using Equations 3 and 4

Coprocessor energy C-core energy/instruction from [Goulding et al. 2010],
scaled to 22 nm using Equations 3 and 4

NoC router energy Modeled as equivalent to one coprocessor
instruction per routing decision

Cache leakage energy,
area, and access time CACTI [Thoziyoor et al. 2008], scaled to 22 nm

Main memory bandwidth We assume LPDDR2 in our system, with 3.2 GB/s bandwidth

Transistor speed

Relative latency of HP and LSTP from synthesized circuits,
also could derive similar value from
[Semiconductor Industries Association 2012].

LP interpolated:
HP latency = 1, LP latency = 1.25 and LSTP latency = 2.5

Transistor leakage/dynamic energy From circuit evaluations, scaled to 22 nm
Software and hardware transitions 30 cycles, measured from microbenchmarks
Execution migration between active tiles 300 cycles, measured from microbenchmarks

Table II. Model parameter values The sources for our model parameters involve a mix of measurements
scaled to 22 nm, and simplifying assumptions about average efficiencies.

energy, we multiply the wire length of each traversed segment of Manhattan-distance routing and
the wire energy per mm, as seen in Equation 1. To calculate the wire length from coprocessor to
mux, we sort the coprocessors by the memory access demand rate, and then place the coprocessors
with higher access rates higher up in the mux tree.

We set the transition cost between software and hardware on the same tile at 30 cycles, based
on microbenchmarks exercising a fully-synthesized model of the c-core host interface. Transitions
between active tiles take 300 cycles including interrupt handling and context transfers over the on-
chip network, modeled on context switch overheads in RAW [Taylor et al. 2004].

Areanew = Areaold ∗ (λnew/λold)2 (2)

Leakage energy per square mmnew =(Leakage energy per square mmold

∗3D Factor ∗ (λold/λnew)2
) (3)

Dynamic energynew = Dynamic energyold ∗ (λnew/λold) (4)

Equations 2, 3, and 4 are used to scale the area, leakage energy, and dynamic energy, respectively.
λold and λnew represent the feature size of the old and new process technology. Equation 2 is
straightforward: transistor density will continue to increase with process feature size for compute-
constrained designs. Equation 3 is slightly more complex. Transistor leakage is a parameter that
designers have quite a bit of control over, by setting the threshold and supply voltages. However,
limiting leakage has brought us to a post-Dennardian scaling regime for dynamic energy at the cost
of holding per-transistor leakage at bay. Thus, for the first part of Equation 3 we hold innate leakage
constant per transistor. To account for the move from planar to 3D transistors at the 32 nm to 22 nm
transition, we employ an additional scaling factor to account for FinFET-specific efficiencies. The
3D Factor we use is 0.7, derived from Intel literature on their 22 nm process [Bohr and Mistry 2011].
The third part is the transistor density scale factor. The reason for choosing the leakage energy per
square mm as our parameter is that we also need to model the inactive leakage energy, which is easy

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 0:9

to calculate by area and this parameter. We compute separate leakage/unit area numbers for each
of the three transistor types we consider. Finally, the dynamic energy model (Equation 4) is more
direct. In a post-Dennardian scaling scenario, we elide energy savings from voltage reduction, and
only credit reductions in capacitance as the sources of improved dynamic energy. This appears as
the second factor in Equation 4.

The memory trace drives a cache simulator modeling the L1 and L2 caches. We use this simulator
and parameters from CACTI [Thoziyoor et al. 2008] to model area, dynamic and static energy for
our caches. We model the cache in CACTI at 32 nm, and then scale down to 22 nm. Area, leakage,
and dynamic energy are scaled according to Equations 2, 3, and 4, respectively.

Each L2 is non-inclusive and serves only the L1s in the corresponding voltage domain. Evictions
from the L1 cause allocations in L2, and hits in the L2 transfer the line to the requesting L1 and
invalidate it in the L2. On an L1 miss, the L1 accesses the L2 before consulting the coherence
directory for that domain. If the missed line is present in another L1, the directory will initiate a
cache-to-cache transfer between the two L1s.

Dynamic and static instruction counts for the annotated regions let us model c-core area (for
those c-cores not already run through place-and-route) and execution coverage. The individual c-
cores range in area from 0.0015 to 0.28 mm2. We estimate area for c-cores that we have not yet
built based on a simple regression model using static counts of each operator type (add, multiply,
load, shift, FMAD, etc.) in the annotated region that we calibrated against previously published
areas for the placed-and-routed c-cores in [Sampson et al. 2011] and those fully placed and routed
for the workload in this paper. Similarly, we use data from previously published work [Sampson
et al. 2011] to model increased execution time due to increased L1 access latencies as c-cores move
further away from the L1 in larger tile designs.

Transistor leakage and performance can vary dramatically depending on technology library. We
derive leakage and area values from post-place-and-route synthesis of c-cores in a 40 nm low-power
library and a 45 nm general-purpose library, both from TSMC. From these experiments, we model
c-core and other non-cache logic leakage scaled to 22 nm at 0.25 mW/mm2, 1.02 mW/mm2, and
29.28 mW/mm2 for leakage-optimized, low power, and performance-oriented designs, respectively.
The scale process follows Equation 4. To model the effect of transistor choice on performance, we
scale the non-memory portion of compute time for CoDAs by 2.0, 1.0, and 0.8 for the leakage-
optimized, low power, and performance-oriented designs, respectively.

We compare against our energy-efficient in-order baseline processor running at 3 GHz. Based on
the c-core energy component breakdown in [Goulding et al. 2010], we model dynamic energy per
instruction for non-memory computation in our c-cores as 30× less than that for our host processor,
which uses 43 pJ/instruction in 22 nm. Prior work [Sampson et al. 2011] shows that c-cores execute
27% faster than the host processor on average.

3.3. Components of performance, area, and energy models
The analytical model has three primary outputs: performance, area, and energy. We give more details
about each submodel in this section. Figure 3 shows the performance components we modeled. All
performance values except CPI come from our trace simulator. CPI is done separately, because it
can be a function of internal tile placement due to additional applications’ c-cores receiving higher
priority in the mux tree to the L1, and the mux tree is modeled at a higher level. In our analytical
model, we use these execution cycles for all processor components to calculate the effective CPI,
which is later used to calculate the energy per instruction.

Figure 4 lists the main contributors to chip area. The total area of L2 caches depends on both the
size of each L2 cache and the number of voltage domains that it is duplicated across.

We model the energy usage by different components at several levels of detail. For normalization
across benchmarks, and between hardware and software, we normalize our energy model in terms
of energy per equivalent instruction in software. Figure 5 demonstrates all the components and their
hierarchical relationship in the energy model. Additional modeling in Section 5 concerning concur-

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:10 Q. Zheng et al.

Performance



Software execution cycles on host processor

Hardware execution cycles on coprocessors

Software and hardware transition cycles

T ile transition cycles including interrupt handling and context transfers

NoC route cycles

L1 cache access cycles

L2 cache access cycles

Main memory access cycles

Cache− to− cache transfer cycles including all coherence

Cycles per instruction (CPI)

Fig. 3. Hierarchical view of performance model We use the output from the annotated binaries for our workload
to calculate all components of execution time.

Area



Area of the tiles



Host processor area

L1 cache area

NoC router area

Coprocessors area

MUX area

L2 cache area

Fig. 4. Hierarchical view of area model We model each of these separately and then use formulas to combine
them.

rent execution uses statistical models of c-core occupancy to determine the impacts of contention
on energy per instruction.

In this paper, we focus on the energy consumed by the on-chip portion of CoDA-based systems.
In real systems, on-chip energy is clearly not the only contributor to energy consumption, and other
researchers are actively optimizing these other components. For instance, promising research on
low-energy DRAM systems is advancing the use of through-silicon vias, package-on-package and
low-energy off-chip signaling. Similarly, passive display technologies such as Qualcomm’s Mirasol
are on the horizon. Although these efforts would easily compose with our work, the final properties
of these technologies is still uncertain. Rather than add noise to our results by attempting to incor-
porate these components, we defer to other research (e.g., [IMOD Technology Overview 2008; Lee
et al. 2009]).

4. THE CODA DESIGN SPACE
The basic architecture in Figure 1 still allows great flexibility in a CoDA’s configuration, and the
efficiency of a particular CoDA design will vary with the number of tiles, their size, the selection
of caches, etc. Furthermore, under different design constraints (e.g., varying area budgets) the ideal
values vary.

To understand how the optimal design decisions for CoDAs vary, this section carries out a sys-
tematic survey of the CoDA design space. We use the workloads described above to drive the design
of CoDAs ranging in size from a single small tile and a handful of c-cores to very large devices with
hundreds of c-cores.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 0:11

Energy



Host processor energy



Processor dynamic energy


Software execution energy

Coprocessor conflict energy

Thread conflict ratio

Processor active leakage energy

Processor inactive leakage energy

Each processor power off and power gate ratio

Host processor coverage

Coprocessor energy



Coprocessor dynamic energy

Coprocessor active leakage energy

Coprocessor inactive leakage energy

Each coprocessor power off and power gate ratio

Coprocessor coverage

L1 cache energy


L1 cache dynamic energy

L1 cache active leakage energy

L1 cache inactive leakage energy

Each L1 cache power off and power gate ratio

L2 cache energy

{
L2 cache dynamic energy

L2 cache leakage energy

Communication



Wire energy



From each coprocessor to MUX

From host processor to MUX

In MUX

From MUX to L1 cache

From L1 cache to L2 cache

From L2 cache to main memory

NoC energy


Router dynamic energy

Router leakage energy

Energy used by tree− based interconnection

MUX energy


MUX leakage energy in active tiles

MUX leakage energy in inactive tiles

Each MUX power off and power gate ratio

Fig. 5. Hierarchical view of energy-per-instruction model We model energy components for all the major parts
in the system. For clarity of presentation, we collapse these down to a manageable set that groups lower levels
of the hierarchy appropriately.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:12 Q. Zheng et al.

Parameter Values
Workload size (applications) 8, 16, 32, 64, 128
L2 cache size (KB) 512, 2048, 8192
Per-tile L1 cache size (KB) 8, 16, 32, 64
Maximum tile area (mm2) 0.5, 2, 8, 32, unlimited
Number of voltage domains 1, 4
Power-gating efficiency 0, 90%, 95%, 98%
Transistor library LSTP, LP, HP

Table III. CoDA design space parameters We considered 7200 CoDA designs, one for each possible combi-
nation of the above parameters.

Parameter Direct Impact Impact on Final Results

Workload size Number of coprocessors Chip area, leakage power,
communication distances

Cache size

Area of the chip Active leakage, inactive leakage
and dynamic power

Wire length Energy used by wires
Cache miss rate and
main memory accesses rate CPI and execution time

Hit latency CPI and execution time

Maximum tile area
Area of the chip Active leakage, inactive leakage

and dynamic power
Wire length Energy used by wires

Number of tiles L1 cache number,
thread conflict ratio

Number of voltage domains Number of L2 caches Chip area, leakage energy
On/off-chip wire lengths Energy used by wires, NoC

Power-gating efficiency Inactive leakage power Energy used by CoDA, cache,
host processor, MUX, etc.

Transistor library
Dynamic and static
energy/instruction Energy used by all components

CPI Total non-memory execution time

Table IV. Overview of parameter impacts on the system energy, area, and performance models. While
each parameter influences several of the model components described in Section 3, this table summarizes their
most immediate and largest overall impacts.

4.1. Design parameters
There are many potential CoDA designs. To understand the tradeoffs among them, we systematically
survey the space of possible configurations targeting the workload.

Table III describes the space of CoDA designs that we consider. The design space includes de-
signs ranging from a conventional, general-purpose processor with large caches and a handful of
coprocessors to large arrays of tiles with small caches and many coprocessors. To limit the size of
the design space, we did not consider tiles with heterogeneous cache resources. In total, we evalu-
ated our workloads on 7200 CoDA configurations.

Table IV provides an overview of how each of the parameters interacts with the models described
in Section 3. Several of the parameters are straightforward in nature. For each workload size we
consider, we keep coprocessor coverage constant at nearly 98% and vary the number of c-cores
needed to cover the workload. The design space includes several possible L1 and L2 configurations.
The tile area parameter describes the maximum area of a single tile in our tiled design. Larger tiles
can contain more c-cores and reduce inter-tile hopcounts, but c-cores within the tile may have longer
intra-tile communication paths.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 0:13

Apps L2 L1 Max. Tile # # EDP Area pJ/inst. Speedup Xtr. Tiles
in Cache Cache Area Tiles C-cores vs. SW (mm2) vs. SW Type per

Workload (KB) (KB) (mm2) VD
Baseline 512 32 - 1 0 1.0 10.29 51.05 1.0 HP 1

8 512 32 0.5 5 22 0.200 43.20 10.40 0.941 LP 1-2
16 512 16 0.5 9 44 0.206 45.20 9.97 0.857 LP 2-3
32 512 32 0.5 20 88 0.218 50.70 11.50 0.930 LP 5
64 512 32 0.5 40 176 0.270 60.70 13.39 0.892 LP 10
128 512 32 2.0 16 352 0.286 72.70 14.80 0.926 LP 4

Table V. EDP-optimal designs The parameters for the EDP-optimal CoDA design for each workload size.

The final three parameters are somewhat more complex. Among these are the two power manage-
ment parameters: The number of independent voltage domains on the chip and the efficiency of the
power gating circuits that cut off power to idle chip components within an active voltage domain.
An off-chip voltage regulator can cut power to its domain, effectively reducing its leakage to zero.
“Power-gating efficiency” determines the effectiveness of the power gating circuits that cut power to
inactive tiles in voltage domains that are powered. The designer has some control over this parame-
ter (e.g., by implementing state-of-the-art power gating circuits [Jotwani et al. 2010]) but it is also a
function of manufacturing technology. The final parameter determines the standard cell library used
to implement the design. The available options are low static power (LSTP), low power (LP), and
high performance (HP). Section 3.1 described the leakage and performance properties associated
with each of these values.

4.2. Pareto results
Figure 6 shows the results of the design space study, respectively focusing on designs with a single
voltage domain and on designs with up to four voltage domains. Figure 6(a) plots all single volt-
age domain designs we considered, for all workloads, according to the area they consume and their
energy-delay product (EDP) relative to a general-purpose processor without c-cores and equipped
with a 32 KB L1 and a 512 KB L2. Figure 6(b) plots the same, but for up to four voltage domains.
Then, Figures 6(c)-(f) plot the Pareto-frontier along the energy and delay axes for each of our work-
load sizes for different power gating efficiency/voltage domain combinations, denoted as (X% PGE,
Y VD) respectively. The Pareto-frontiers consist of the design points for which there are no designs
that are both faster (lower delay) and more efficient (lower energy per instruction).

In Figures 6(c)-(f) we can see clearly that the impact of power management increases as CoDAs
grow. Without aggressive dynamic leakage control, larger designs without power-gating must tran-
sition to low-leakage transistors to obtain increasing energy savings, sacrificing performance. Sim-
ilarly, the cost of using high-performance, high-leakage transistors to buy performance, even with
power-gating, rapidly increases as the workload size increases. This is due to the corresponding
increase in leakage from the additional c-core area the CoDA needs to employ to cover the larger
workload.

Even with multiple voltage domains, for larger workloads, tile-granularity or finer power-gating
becomes critical. Additional voltage domains ease the critical dependence on the efficiency of the
power-gating implementation, albeit at the cost of duplicating L2 cache resources. This duplication
cost is apparent in the spreading of area values in Figure 6(a) compared to Figure 6(b). Adding
voltage domains also allows on-chip power gating to operate at coarser granularities, further reduc-
ing complexity. As seen in Figure 6(e) and Figure 6(f), the impact is profound for designs without
effective power-gating.

Figures 6(c)-(f) show that, while changing the number of power domains has limited effect on
the bottom right side of the Pareto curve—designs already embracing both low power transistors
and efficient power gating—the differences are clearer for higher-performance designs at the upper
left. Overall efficiency for the multiple domain designs is greater, and the designs spend more area

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:14 Q. Zheng et al.

Area (sq. mm.)

0 20 40 60 80 100

E
D

P

0

0.5

1

1.5

2

Area (sq. mm.)

0 20 40 60 80 100

E
D

P

0

0.5

1

1.5

2

(a - all workloads, 1 power domain) (b - all workloads, 4 power domains)

Delay
0.75 0.95 1.15 1.35 1.55 1.75

E
ne

rg
y

0

0.2

0.4

0.6

0.8

1
0% PGE, 1 VD

0% PGE, 4 VD

98.1% PGE, 1 VD

98.1% PGE, 4 VD

Delay
0.75 0.95 1.15 1.35 1.55 1.75

E
ne

rg
y

0

0.2

0.4

0.6

0.8

1
0% PGE, 1 VD

0% PGE, 4 VD

98.1% PGE, 1 VD

98.1% PGE, 4 VD

(c - 8 applications) (d - 32 applications)

Delay
0.75 0.95 1.15 1.35 1.55 1.75

E
ne

rg
y

0

0.2

0.4

0.6

0.8

1
0% PGE, 1 VD

0% PGE, 4 VD

98.1% PGE, 1 VD

98.1% PGE, 4 VD

Delay
0.75 0.95 1.15 1.35 1.55 1.75

E
ne

rg
y

0

0.2

0.4

0.6

0.8

1
0% PGE, 1 VD

0% PGE, 4 VD

98.1% PGE, 1 VD

98.1% PGE, 4 VD

(e - 64 applications) (f - 128 applications)

Fig. 6. EDP vs. area and energy vs. delay over design space for each assumed power-gating efficiency and voltage
domain count In (a) and (b) we plot EDP versus area over our entire design space for 1 and 4 voltage domains,
respectively. Each point marks an averaged evaluation over one workload size for one design. We note differ-
ent assumptions for power-gating efficiency with different shades and different workload sizes with different
shapes. In (c)-(f) we plot the energy vs. delay Pareto curve for the four extreme points of our power-gating
efficiency and voltage domain spaces for increasingly large workloads (8, 32, 64, and 128 applications, respec-
tively). As the workload (and CoDA) grow larger, the power-gated and non-power-gated Pareto lines diverge
drastically.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 0:15

Applications in Workload
0 20 40 60 80 100 120 140 160

N
or

m
al

iz
ed

 E
ne

rg
y/

In
st

ru
ct

io
n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Interconnect Dyn.

Interconnect Leak

Coproc. Compute

Coproc. Leak

Proc. Compute

Proc. Leak

L1 Access

L1 Leak

L2 Access

L2 Leak

Fig. 7. Energy components of EDP-optimal designs We show the primary contributing energy components for
the most efficient points in our design space as we scale the workload size, keeping coverage constant. For
larger designs (covering larger workloads), leakage and interface overheads play a larger role, while compute
energy progressively decreases due to transitioning to energy-efficient coprocessors.

to achieve this effect. In an era with increasing quantities of dark silicon, this may be a reasonable
tradeoff. The differences between power-gating techniques are similarly muted by the presence of
additional voltage domains, and designs without fine-grained power-gating retain more than 3×
efficiency for workloads up to 64 applications, whereas by Figure 6(e) these designs have already
diverged. As with the single voltage domain case, however, for higher efficiency at larger workload
sizes, these CoDAs must still feature aggressive dynamic power management, or coprocessor leak-
age will excessively degrade energy efficiency. While the L2 duplication approach is not indefinitely
scalable, these trends indicate that, for even larger workloads than those examined here, partitioning
the design into more domains will improve results until duplication costs run up against the area
budget.

Table V lists the parameters for each of the EDP-optimal configurations from Figures 6 (c)-(f),
from smallest workload to largest. The EDP-optimal points are similar for most of the workload
sizes, but the largest design uses a larger tile size to reduce the number of hops involved in inter-tile
communication.

4.3. Overhead growth as a function of workload size
Figure 7 shows how the components of overall energy consumption in the Pareto-optimal CoDA de-
signs change as the number of applications increases. It shows that, although a CoDA with sufficient
c-cores to cover its workload can reduce compute energy by 94%, that compute energy becomes a
tiny fraction of total energy. The culprit is leaking dark silicon (and Amdahl’s Law). Even with volt-
age domains and 98% efficient power-gating [Jotwani et al. 2010], the leakage accounts for nearly
half of the energy consumption. The costs of traversing local and global interconnect and of access-
ing the L2 cache also contribute significant energy costs. In the case of the interconnect, the wires,
rather than the logic, expend most of the energy.

There are two key takeaways from Figure 7. While it is obvious that managing leakage in a large
chip like a CoDA would be important, it was not at all clear that, even with multiple power do-
mains and 98% effective power gating, the leakage of inactive components would remain a sizeable
overhead in total energy per instruction. Fortunately, the other key takeaway from Figure 7 is more

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:16 Q. Zheng et al.

positive: Despite the clear growth of overheads as CoDAs scale, they do scale. Even with its over-
heads, a CoDA covering 128 applications remains several times more efficient than running the
software on a general-purpose processor. For many domains, such as Android platforms, where 128
applications may be enough to cover over 80% of the total execution time [Goulding-Hotta et al.
2012], this means that CoDAs scale sufficiently well to be practical.

4.4. Area scaling and defect tolerance
The potential for defect rates to increase as CoDAs grow is an interesting consideration. Since the
original application can run unmodified on any tile’s host processor without using any particular c-
core, the CoDA design approach is highly resistant to defects in most on-chip components; known
defective components will simply not be used. Indeed, the same mechanism that checks if a c-core
is available in the face of contention can be used to seamlessly avoid execution on any components
discovered to be defective. Thus, CoDAs gracefully decay with progressively higher defect rates,
or as workloads shift away from their target: CoDAs retain functionality at all times and degrade
in power and performance efficiency as a function of unusable c-cores. Because c-core usage in a
CoDA is transparent to the programmer, this does not represent a usability or virtualization hurdle
at the programming layer. Thus, while CoDAs, being larger, may have lower defect-free yields than
smaller SoCs, even defective CoDAs are likely still highly usable. We envision that for CoDAs,
rather than speed-binning, a key sorting policy may be coverage-binning based on the expected
fraction of the workload that can successfully execute on c-cores.

5. CODAS AND CONCURRENCY
Concurrent execution is now ubiquitous in computing platforms ranging from cell phones to data
centers, so understanding the impact of multithreaded and multi-program workloads on CoDAs (and
vice versa) is essential. This section identifies the positive and negative impacts that multi-threading
has on CoDAs and describes several techniques to address the problems that can arise.

On the positive side, running multiple threads on a CoDA increases overall energy efficiency be-
cause it amortizes fixed energy costs, including those due to leakage, across the work from multiple
threads. At the same time, however, concurrent threads raise the possibility of competition for c-
cores. This can occur when two applications want access to a c-core that targets part of a shared
library (e.g., glibc), or when two threads in the same application are executing the same function. In
these cases, the “losing” thread will either execute on a general-purpose core, sacrificing efficiency,
or wait, sacrificing performance. We assume that the scheduler always schedules the contending
thread on a general-purpose core. More aggressive schedulers may use more complicated heuristics
to dynamically decide whether to sacrifice energy or performance.

The amount of contention for c-cores depends on the number of instances of that c-core present
in the CoDA and the number of threads that need access to it. The profiling process that identifies
the “hot” functions to target with c-cores can also determine how many copies of each c-core are
necessary to avoid contention.

Another concern for scaling up the number of threads on a CoDA is the utilization of available
bandwidth and contention for communication resources. However, while the number of c-cores may
rise rapidly, the maximum number of concurrent threads on a CoDA is limited to the number of tiles,
which is more modest - the design in Table V with the lowest single-thread EDP uses 16 tiles.

Given that the memory system of each tile is blocking and in-order, the maximum number of
outstanding misses at a time for this CoDA is 16, several of which may be resolved in the L2.
RAW [Taylor et al. 2004], also with 16 tiles, an equivalent NoC, and a similar memory system
(although it lacked L2 caches), saw less than 7% average performance degradation when executing
SPEC workloads independently across all 16 of its tiles. In practice, we find that, because of the
blocking nature of the L1, we do not significantly speed up the total rate of memory accesses leaving
the L1 compared to the original software-only execution. Our own experiments indicate that in the
average case for our workload, the average offchip bandwidth required is quite modest, as shown in
Figure 8. Thus, contention due to workload mismatch is likely to dominate multi-threading effects

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 0:17

Threadcount
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G
B

/s

0

0.5

1

1.5

2

2.5

3

3.5

4

1 LPDDR2

Average Bandwidth needed by Host only

Average Bandwidth needed by CoDA

Fig. 8. Off-chip memory bandwidth usage We calculate the average off-chip memory bandwidth needed by all
the benchmarks, and calculate how it scales when we run more and more threads, assuming a uniform random
distribution among our benchmarks. Between the in-order, blocking nature of the L1 caches that limits the rate
of misses, and the filtering effects of the L2 caches, the total off-chip bandwidth could be readily served by a
small number of LPDDR2 channels.

for this workload. We acknowledge that, for alternative workloads, such as for instance running
16 copies of the MCF benchmark, bandwidth contention would be a primary determining factor in
performance, since such a workload would require more than 3× the off-chip bandwidth of the one
we consider.

5.1. Target workload sensitivity
If there is a mismatch between the profile measurements and the workload’s needs “in the field,” the
benefits of amortizing fixed costs across threads will be lost. In our multithreading experiments, we
consider two workload distribution scenarios. The first distribution scenario, Uniform, describes the
case where all applications account for an equal share of execution time. In the second workload
distribution scenario, Non-uniform, 10% of the applications account for 90% of execution time.

Threadcount
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pJ
/In

st

0

10

20

30

40

50

60

70

Software Baseline (1−thread)

Total Energy/Inst

Amortizable Overhead

Conflict Overhead

Fig. 9. The benefits of multithreading Total energy per instruction is the sum of the per-thread energy, shared
energy overheads, and the energy from execution on a general-purpose core rather than a c-core because of
contention. Overall, if the running workload is a good match for the CoDA, energy per instruction drops
because multiple threads can amortize the leakage energy of idle, but still powered, components.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:18 Q. Zheng et al.

Threadcount
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pJ
/In

st

0

10

20

30

40

50

60

70

Software Baseline (1−thread)

Total Energy/Inst

Amortizable Overhead

Conflict Overhead

Fig. 10. The cost of contention In this example, the running workload is a poor fit for the CoDA, resulting in
high contention for a small number of c-cores. In this case, the conflict energy rises continuously, swamping
the gains from amortizing shared energy overheads.

Figures 9 and 10 demonstrate the impact of contention and workload mismatch on energy effi-
ciency. We begin by selecting a particular CoDA design: We use the CoDA that provided the best
EDP from our design space for the uniform workload distribution scenario (i.e., the designer ex-
pected there to be very little contention) over the 128-program workload. The parameters for this
design can be seen as the last row in Table V. As the CoDA has 16 tiles, it can support up to 16
simultaneous threads.

Figure 9 shows how energy per instruction for a fixed CoDA design changes as the number of
concurrent threads increases for a workload matching the target distribution (i.e., there actually is
very little contention). The graph shows total energy per instruction and two of its subcomponents:
Amortizeable Overhead (i.e., fixed leakage costs that multiple threads can amortize), and Conflict
Overhead (e.g., extra energy required to execute a thread on a general-purpose core rather than a
c-core). For context, a constant line at the top of the graph depicts the energy per instruction for a
single-threaded software execution.

The data show that adding three threads can reduce total energy per instruction by 9%. Beyond
four threads, the rise in conflict energy overpowers the reduction in shared overhead. Running 16
threads will increase per-instruction energy by 5% over the single-threaded case.

Figure 10 shows energy efficiency for the same CoDA, designed for the Uniform distribution sce-
nario, but running a workload which follows the Non-uniform distribution scenario, which creates a
severe workload mismatch. The result is significantly higher contention and much lower energy ef-
ficiency. In this case, there is a long rise in energy per instruction due to growing conflict overhead.
At 16 threads the energy per instruction has more than doubled. The conflict overhead rises much
more rapidly in this case because the workload distribution differs so greatly from the training set.

5.2. Mitigating contention via c-core merging
In most cases perfect profiling is impossible, and contention for c-cores is inevitable. However, we
can take measures to reduce its impact. The simplest way to reduce the cost of contention is to repli-
cate c-cores to provide “spares” that can absorb unexpected increases in demand. However, naively
providing spare c-cores nearly doubles CoDA area and would decrease single-threaded efficiency
by 23.4% due to increased leakage and interconnect overheads.

To reduce the area cost of replication we can exploit the fact that, in most cases, applications will
need the “spare” c-cores infrequently. To exploit this observation, we can merge multiple spare c-
cores, allowing a single spare to reduce the impact of contention for many different c-cores. Previous
work [Venkatesh et al. 2011] describes how to merge c-cores. That approach automatically identifies

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 0:19

target functions that are similar to one another such that generating a single coprocessor that can
execute either function would only be slightly larger and slightly less efficient than a dedicated c-
core for each piece of code. That work shows that merging c-cores can reduce the area required to
cover a given set of functions by 23% while reducing the energy efficiency of the specialized logic
by 27%. Since the dynamic energy of the specialized logic represents a modest fraction of the total
energy, this tradeoff will often be beneficial for CoDAs targeting multi-threaded workloads.

Threadcount
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pJ
/In

st

0

10

20

30

40

50

60

70

Software Baseline (1−thread)

Non−uniform, 1x C−Cores (no spares)

Non−uniform, 2x C−Cores (merged)

Uniform, 1x C−Cores (no spares)

Uniform, 2x C−Cores (merged)

Fig. 11. The benefits of spare c-cores Adding spare c-cores to CoDAs reduces the impact of contention and,
therefore, energy per instruction. Merging the spare c-cores preserves most of the energy savings while reduc-
ing the area overhead for the spares.

To quantify the benefits of merging, we created a CoDA that uses merged spares to provide twice
as many of each type of c-core, at a cost of 41% additional area and a 15% reduction in single-
threaded efficiency. Figure 11 plots the total energy per instruction of a CoDA with merged spares
compared to the CoDA from Figures 9 and 10. Merging provides benefits for both the Uniform
(bottom two lines) and Non-uniform (middle two lines) workload distributions. For the Uniform
case, providing spare c-cores improves energy efficiency by 7.4% at 16 threads. In the Non-uniform
case, where the workload is mismatched, the merged-c-core CoDA improves energy efficiency by
up to 22.1% (at 7 threads) and continues to provide a gain of 11.1% energy efficiency over a CoDA
without merged spares at 16 threads.

6. RELATED WORK
As the dark silicon problem grows, designers are increasingly integrating specialized coprocessors
into general-purpose architectures. GPUs are an especially common addition, and the latest offerings
from Intel and AMD directly integrate GPUs and processors on-chip. Many recent efforts [Luk
et al. 2009; Owens et al. 2005; Wang et al. 2007] attempt to harness these heterogeneous platforms
with language extensions like CUDA [Nickolls et al. 2008] and streaming frameworks such as
Brook [Buck et al. 2004], but they focus primarily on highly-parallel code and loosely-coupled
execution models.

Even flexible heterogeneous processing frameworks such as Intel’s EXOCHI [Wang et al. 2007]
face challenges in using 1000s of distinct coprocessors in one design: EXOCHI’s uniform abstrac-
tion for sequencing execution across heterogeneous execution engines requires specialized compil-
ers for each piece of target hardware. Recent efforts have focused on automating the production and
use of specialized coprocessors [Venkatesh et al. 2010; Sampson et al. 2011]. These automatically-
generated coprocessors do not achieve the performance of hand-crafted accelerators, but they are
very energy-efficient and can target nearly-arbitrary code, including irregular code that is difficult
to parallelize.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:20 Q. Zheng et al.

Previous efforts to execute the majority of applications in hardware relied on reconfigurable fab-
rics rather than dedicated coprocessors. Tartan [Mishra et al. 2006] mapped entire programs onto
a hierarchical coarse-grained asynchronous reconfigurable fabric. Reconfigurable logic allows for
greater flexibility, but estimates in [Mishra et al. 2006] showed fabric virtualization is necessary to
map entire programs, and that adds performance and energy overheads.

Tiled architectures, such as Raw [Taylor et al. 2004], TRIPS [Sankaralingam et al. 2003], and
WaveScalar [Swanson et al. 2007], are a common approach to improving scalability because they re-
duce wire delay. Scalable CoDA systems also use a tiled architecture for this reason and to distribute
coprocessors among multiple memory and host interfaces. The authors of GreenDroid [Goulding
et al. 2010; Goulding-Hotta et al. 2011] suggested tiling as a means of organizing a coprocessor-
enabled system but did not investigate the scalability problems that this work identifies and ad-
dresses.

Hannig et. al [Hannig et al. 2011] describe a model for dynamically mapping computations to
a heterogeneous MPSoC via an invasive computing paradigm. While CoDA systems could poten-
tially benefit from such an exploration of parallel resources, the current CoDA approach focuses
on reducing energy for primarily serial applications. Moreover, the CoDA approach is intentionally
designed to work with completely unmodified legacy code, requiring only a mapping between the
functions present in a program and the functions covered in hardware, allowing complete program-
mer transparency. The best approach to designing new programs written with CoDA systems in
mind remains a topic of future research.

Like CoDAs, previous work [Allred et al. 2012] has also proposed a methodology to design a
multicore systems for dark silicon. While that work operates mainly on a architecturally identical
cores but individually optimized for different voltage-frequency domains, and only discuess the
energy efficiency of the processing cores, CoDAs operate at much finer granularity and far greater
scale over diverse processing elements. In this paper, we are not only discuess the processing cores,
but also the cache system and the interconnections.

Previous work, such as [Vuletic et al. 2006], that examined interactions between multi-threading
and coprocessors focused heavily on device virtualization and managing the local memories within
accelerators. In contrast, the c-cores in a CoDA are coherent by default and do not have large private
memories. C-cores can also use merging [Venkatesh et al. 2011] to mitigate resource contention by
increasing the number of c-cores capable of running a given task without increasing the number of
c-cores, rather than add full-fledged virtualization.

Previous works that sought to offload the majority of execution to coprocessors [Sampson et al.
2011; Venkatesh et al. 2010] utilized clock-gating, but not power-gating. As Figure 6 shows, power-
gating is critical to the efficiency of CoDAs targeting large workloads because so much silicon will
sit idle and power-gated almost all of the time. This requires designers to assume, from the outset,
that all processing elements in CoDAs are in the deepest sleep state possible by default. While
sensor motes [Seok et al. 2008] and other energy-critical systems have long operated with such a
model, it is not the traditional model for general-purpose processors.

7. CONCLUSION
This paper has examined the scalability challenges that arise with the integration of hundreds of spe-
cialized coprocessors into general-purpose architectures. Our systematic survey of the CoDA design
space showed that scalable designs that cover over 100 applications can provide 3.7× improvements
in energy and 3.5× improvements in energy-delay across the entire workload. We found that the key
limiters of the efficiency in scalable CoDA designs are leakage in dark silicon and overheads in the
network and memory system that arise in large, tile-based designs.

The results suggest that contention among threads for shared coprocessors can limit efficiency
gains, but that CoDAs can provide area-efficient “spare” coprocessors to provide up to 3.8× im-
provements in energy per instruction relative to a single-threaded workload by amortizing fixed
leakage, interconnect, and memory system costs.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 0:21

REFERENCES
Jason Allred, Sanghamitra Roy, and Koushik Chakraborty. 2012. Designing for Dark Silicon: A Methodological Perspective

on Energy Efficient Systems. In Proceedings of the 2012 ACM/IEEE International Symposium on Low Power Electron-
ics and Design (ISLPED ’12). ACM, New York, NY, USA, 255–260.

Mark Bohr and Kaizad Mistry. 2011. Intel’s Revolutionary 22 nm Transistor Technology. In Intel documents.
Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, and Pat Hanrahan. 2004. Brook

for GPUs: stream computing on graphics hardware. ACM Trans. Graph. 23, 3 (Aug. 2004), 777–786.
Nathan Clark, Amir Hormati, and Scott Mahlke. 2008. VEAL: Virtualized Execution Accelerator for Loops. In Proceedings

of the 35th Annual International Symposium on Computer Architecture (ISCA ’08). IEEE Computer Society, Washing-
ton, DC, USA, 389–400.

Hamed F. Dadgour and Kaustav Banerjee. 2007. Design and Analysis of Hybrid NEMS-CMOS Circuits for Ultra Low-Power
Applications. In Proceedings of the 44th ACM/IEEE Design Automation Conference (DAC ’07). 306–311.

Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu, V. Leo Rideout, Ernest Bassous, and Andre R. LeBlanc. 1974.
Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. IEEE Journal of Solid-State Circuits 9, 5
(Oct. 1974), 256–268.

Embedded Microprocessor Benchmark Consortium. 2002. EEMBC Benchmark Suite. (2002). http://www.eembc.org.
Hadi Esmaeilzadeh, Emily Blem, Renée S. Amant, Karthikeyan Sankaralingam, and Doug Burger. 2011. Dark Silicon and

the End of Multicore Scaling. In Proceedings of the 38th annual international symposium on Computer architecture
(ISCA ’11). IEEE, 365–376.

Nathan Goulding, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia, Joe Auricchio, Jonathan Babb, Michael B. Taylor,
and Steven Swanson. 2010. GreenDroid: A Mobile Application Processor for a Future of Dark Silicon. In Hot Chips
22.

Nathan Goulding-Hotta, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia, Joe Auricchio, Po-Chao Huang, Manish Arora,
Siddhartha Nath, Vikram Bhatt, Jonathan Babb, Steven Swanson, and Michael B. Taylor. 2011. The GreenDroid Mobile
Application Processor: An Architecture for Silicon’s Dark Future. Micro. IEEE 31, 2 (Mar./Apr. 2011), 86–95.

Nathan Goulding-Hotta, Jack Sampson, Qiaoshi Zheng, Vikram Bhatt, Joe Auricchio, Steven Swanson, and Michael B.
Taylor. 2012. GreenDroid: An Architecture for the Dark Silicon Age. In Design Automation Conference, 2012 17th
Asia and South Pacific (ASP-DAC ’12). IEEE, 100–105.

Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Nadathur Satish, Karthikeyan Sankaralingam,
and Changkyu kim. 2012. DySER: Unifying Functionality and Parallelism Specialization for Energy Efficient Comput-
ing. Micro. IEEE 33, 5 (Oct. 2012), 38–51.

Frank Hannig, Sascha Roloff, Gregor Snelting, Jürgen Teich, and Andreas Zwinkau. 2011. Resource-aware Programming
and Simulation of MPSoC Architectures through Extension of X10. In Proceedings of the 14th International Workshop
on Software and Compilers for Embedded Systems (SCOPES ’11). ACM, New York, NY, USA, 48–55.

Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. 2011. Toward Dark Silicon in Servers. IEEE
Micro 31, 4 (Aug. 2011), 6–15.

Michael B. Henry, Robert Lyerly, Leyla Nazhandali, Adam Fruehling, and Dimitrios Peroulis. 2011. MEMS-Based Power
Gating for Highly Scalable Periodic and Event-Driven Processing. In VLSI Design (VLSI Design), 2011 24th Interna-
tional Conference on. 286 –291.

Michael B. Henry and Leyla Nazhandali. 2010. From Transistors to MEMS: Throughput-aware Power Gating in CMOS
Circuits. In Design, Automation Test in Europe Conference Exhibition (DATE ’10). 130–135.

IMOD Technology Overview 2008. IMOD Technology Overview. (May 2008). http://www.qualcomm.com/common/
documents/white papers/QMT Technology Overview 12-07.pdf.

Independent JPEG Group. 2002. Library for JPEG Image Compression. (2002). http://www.ijg.org/.
Ravi Jotwani, Sriram Sundaram, Stephen Kosonocky, Alex Schaefer, Victor Andrade, Greg Constant, Amy Novak, and

Samuel Naffziger. 2010. An x86-64 core implemented in 32nm SOI CMOS. In Solid-State Circuits Conference Digest
of Technical Papers, 2010 IEEE International (ISSCC ’10). 106 –107.

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation.
In Proceedings of the 2004 international symposium on Code generation and optimization (CGO ’04). IEEE Computer
Society, 75–86.

Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting Phase Change Memory as A Scalable Dram
Alternative. In Proceedings of the 36th annual international symposium on Computer architecture (ISCA ’09). ACM,
New York, NY, USA, 2–13.

Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. 2009. Qilin: Exploiting Parallelism on Heterogeneous Multiprocessors
with Adaptive Mapping. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture
(Micro ’09). ACM, 45–55.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:22 Q. Zheng et al.

Mahim Mishra, Timothy J. Callahan, Tiberiu Chelcea, Girish Venkataramani, Seth C. Goldstein, and Mihai Budiu. 2006.
Tartan: evaluating spatial computation for whole program execution. SIGOPS Oper. Syst. Rev. 40, 5 (Dec. 2006), 163–
174.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable Parallel Programming with CUDA. In SIG-
GRAPH ’08: ACM SIGGRAPH 2008 classes. ACM, New York, NY, USA, 1–14.

John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krger, Aaron E. Lefohn, , and Timothy J. Purcell. 2005.
A Survey of General-Purpose Computation on Graphics Hardware. In Eurographics 2005, State of the Art Reports. 21–
51.

Jack Sampson, Ganesh Venkatesh, Nathan Goulding-Hotta, Saturnino Garcia, Steven Swanson, and Michael B. Taylor. 2011.
Efficient Complex Operators for Irregular Codes. In Proceedings of the 17th IEEE International Symposium on High
Performance Computer Architecture (HPCA ’11). IEEE, 491–502.

Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim, Jaehyuk Huh, Doug Burger, Stephen W.
Keckler, and Charles R. Moore. 2003. Exploiting ILP, TLP, and DLP with the Polymorphous TRIPS Architecture. In
Proceedings of the 30th Annual International Symposium on Computer Architecture (ISCA ’03). ACM Press, 422–433.

Semiconductor Industries Association. 2012. International Technology Roadmap for Semiconductors. (2012). http://www.
itrs.net/Links/2012ITRS/Home2012.htm, 2012.

Mingoo Seok, S. Hanson, Yu-Shiang Lin, Zhiyoong Foo, Daeyeon Kim, Yoonmyung Lee, Nurrachman Liu, D. Sylvester,
and D. Blaauw. 2008. The Phoenix Processor: A 30pW Platform for Sensor Applications. In VLSI Circuits, 2008 IEEE
Symposium on. 188 –189.

Standard Performance Evaluation Corporation. 2000. SPEC CPU 2000 Benchmark Specifications. (2000). SPEC2000
Benchmark Release.

Standard Performance Evaluation Corporation. 2006. SPEC CPU 2006 Benchmark Specifications. (2006). SPEC2006
Benchmark Release.

Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew Petersen, Andrew Putnam, Ken Michelson, Mark Oskin, and
Susan J. Eggers. 2007. The WaveScalar Architecture. ACM Trans. Comput. Syst. 25, 2 (May 2007), 4.

Michael B. Taylor. 2012. Is Dark Silicon Useful? Harnessing the Four Horesemen of the Coming Dark Silicon Apocalypse.
In Proceedings of the 49th ACM/IEEE Design Automation Conference (DAC ’12). ACM, New York, NY, USA, 1131–
1136.

Michael B. Taylor. 2013. A Landscape of the New Dark Silicon Design Regime. Micro, IEEE 33, 5 (Sept-Oct. 2013), 8–19.
Michael B. Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben Greenwald, Henry Hoffmann, Paul Johnson, Ja-

son Kim, James Psota, Arvind Saraf, Nathan Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe, and Anant
Agarwal. 2004. Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay Architecture for ILP and Streams.
In Proceedings of the 31st annual International Symposium on Computer Architecture (ISCA ’04). IEEE Computer
Society, 2–13.

Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and Norman P. Jouppi. 2008. CACTI 5.1. Technical Report
HPL-2008-20. HP Labs, Palo Alto. http://www.hpl.hp.com/techreports/2008/HPL-2008-20.html

Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven
Swanson, and Michael B. Taylor. 2010. Conservation Cores: Reducing the Energy of Mature Computations. In Pro-
ceedings of the 15th edition of ASPLOS on Architectural support for programming languages and operating systems
(ASPLOS ’10). ACM, New York, NY, USA, 205–218.

Ganesh Venkatesh, Jack Sampson, Nathan Goulding-Hotta, Sravanthi K. Venkata, Michael B. Taylor, and Steven Swanson.
2011. QsCores: Trading Dark Silicon for Scalable Energy Efficiency with Quasi-Specific Cores. In Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture (Micro ’11). IEEE Computer Society, ACM,
New York, NY, USA, 163–174.

Miljan Vuletic, Paolo Ienne, Christopher Claus, and Walter Stechele. 2006. Multithreaded Virtual-memory-enabled Recon-
figurable Hardware Accelerators. In Field Programmable Technology, 2006. IEEE International Conference on (FPT
’06). 197–204.

Perry H. Wang, Jamison D. Collins, Gautham M. Chinya, Hong Jiang, Xinmin Tian, Milind Girkar, Nick Y. Yang, Guei-Yuan
Lueh, and Hong Wang. 2007. EXOCHI: Architecture and Programming Environment for A Heterogeneous Multi-core
Multithreaded System. In Proceedings of the 2007 ACM SIGPLAN conference on Programming language design and
implementation (PLDI ’07). ACM, New York, NY, USA, 156–166.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2013.

