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Abstract—In the era of multi-core, computer vision has
emerged as an exciting application area which promises to
continue to drive the demand for both more powerful and more
energy efficient processors. Although there is still a long way to
go, vision has matured significantly over the last few decades, and
the list of applications that are useful to end users continues to
grow. The parallelism inherent in vision applications makes them
a promising workload for multi-core and many-core processors.

While the vision community has focused many years on
improving the accuracy of vision algorithms, a major barrier
to the study of their computational properties has been the lack
of a benchmark suite that simultaneously spans a wide portion
of the vision space and is accessible in a portable form that the
architecture community can easily use.

We present the San Diego Vision Benchmark Suite (SD-VBS), a
suite of diverse vision applications drawn from the vision domain.
The applications are drawn from the current state-of-the-art in
computer vision, in consultation with vision researchers. Each
benchmark is provided in both MATLAB and C form. MATLAB
is the preferred language of vision researchers, while C makes it
easier to map the applications to research platforms. The C code
minimizes pointer usage and employs clean constructs to make
them easier for parallelization.

Furthermore, we provide a spectrum of input sets that enable
researchers to control simulation time, and to understand proper-
ties as inputs increase to leverage better processor performance.

In this paper, we describe the benchmarks, show how their
runtime is attributed to their constituent kernels, overview some
of their computational properties – including parallelism – and
show how they are affected by growing inputs. The benchmark
suite will be made available on the Internet, and updated as new
applications emerge.

I. INTRODUCTION

Computer vision is an exciting application domain that has

undergone extensive research and progress over the last few

decades, and continues to evolve. Vision has found uses across

a diverse and rich set of fields including medicine, automotive

robotics, web search, guidance systems, and even care for the

elderly. Some areas have been developed so much that they

are considered “solved problems” and algorithms researchers

have moved on to new areas.

In order to focus on the core algorithms, many vision

researchers have long ago abandoned the requirement for real-

time processing, let alone super real-time processing. At the

same time, robotics researchers have long been accustomed

to the realization that many of these algorithms will be out

of reach for untethered stand-alone systems because of the
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impracticality of running these algorithms on the available

computational platforms in real-time.

Recently, motivated by the power crisis brought on by tran-

sistor scaling limitations, the processor industry has adopted

the multi-core and many-core processor paradigm as the cho-

sen way of improving the performance of consumer computing

systems. However, this performance can only be realized

on those application domains that have sufficient levels of

exploitable parallelism. It is these applications that will exploit

the benefits of highly multi-core processors, and simultane-

ously, drive the demand for the next generation of Moore’s

Law.

Computer vision is a tantalizing application domain for

multi-core processors because it offers the prospect of ample

parallelism. Multi- and many- core processors, as well as spe-

cialized hardware solutions, provide the promise of bringing

state-of-the-art vision algorithms to real-time, and even super-

real time performance levels1. These kinds of computations are

highly constrained by computation, cost and power on current

systems. Enabling real-time vision in machines relies not only

on the advancement of computer vision research but also on

the improvement of the hardware and software platforms that

will make vision viable in tethered and untethered systems

within the system’s energy and cost budget.

Even as a given vision application is made viable by

improvements to our computational platforms, new directions

exist which require continued increases in performance. More

ambitious goals drive us to try more precise analyses, larger

image sizes, more extensive databases of features to match

against, and ultimately, super-real-time analysis of pre-existing

footage. As a result, vision processing is an area that will

continue to spur the growth of successively more advanced

vision platforms.

In addition to many- core and multi- core processor plat-

forms, specialized vision architectures have been an exciting

area of research and commercial activity for several decades.

In that time, vision platforms have evolved from MIMD

computer boards [1] to complete SoC (System on Chip)

implementations [2] and distributed system [3] that promise

support for a variety of vision sub-areas. Commercial chips

for computer vision have also been proposed and designed

1For instance, as Internet search companies would like to do with images
on the Internet. In the same way that we want to process text at super-real
time, so too does it makes sense to process images in super-real time.
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commercially in the past, such as Sarnoff’s Acadia [4] and

MobilEye’s EyeQ [2].

To foster understanding of vision workloads, whether for

multi- or many- core systems, or for specialized platforms,

or for compilation and run-time systems, we have devel-

oped a benchmark suite, called SD-VBS, which includes

nine important vision applications drawn from a diverse set of

vision domains. The nine applications themselves are in turn

composed a collection of over 28 non-trivial computationally

intensive kernels. The applications and kernels are shown in

Figure I.

For each of these applications, we provide both MATLAB

and C versions. The MATLAB is typically the original source

language of the benchmarks, as coded by vision researchers.

The C versions are provided to make it easier for architecture

researchers to work with the benchmarks. They have been

coded in a “clean” subset of C which avoids unnecessary

use of pointers, legacy or machine-specific optimization, and

C language features that make analysis and transformation

difficult. The goal is to facilitate the analysis, transformation,

parallelization, and simulation of the benchmarks by compiler

and architecture researchers.

Each benchmark is provided with inputs of three different

sizes, which enable architects to control simulation time, as

well as to understand how the application scales with more

difficult inputs. We have also provided several distinct inputs

for each of the sizes, which can facilitate power and sensi-

tivity studies. Section III examines execution properties of the

benchmarks with the different inputs, in order to give intuition

on benchmark kernel importance and scaling as inputs are

changed and increased in size.

The specific contributions of this work are as follows:

• We introduce a new vision benchmark suite, which covers

a rich set of applications and utilizes a comprehensive set

of common vision kernels.

• We describe the benchmarks, their purpose and their basic

structure.

• The benchmark is written in both MATLAB and “clean”

C, the languages of choice for vision researchers and

computer architects.

• High-level execution properties of each vision application

are analyzed, providing insight into the workings of the

applications and their kernels.

The rest of the paper is organized as follows. Section II

describes the applications constituting the benchmarks and the

vision kernels covered. Section III examines the characteristics

of the applications. Section IV presents the related work, and

the paper concludes with Section VI.

II. VISION BENCHMARK SUITE

In our effort to build a comprehensive benchmark for

computer vision domain, we consulted widely with vision

and machine learning researchers and assembled a diverse

set of vision applications. The San Diego Vision Benchmark

Suite (SD-VBS) comprises nine applications employing over

28 kernels, with three different sets of configurations per

TABLE I
BENCHMARK CLASSIFICATION BASED ON CONCENTRATION AREA

Benchmark Concentration Area

Disparity Map Motion, Tracking and Stereo Vision

Feature Tracking Motion, Tracking and Stereo Vision

Image Segmentation Image Analysis

SIFT Image Analysis

Robot Localization Image Understanding

SVM Image Understanding

Face Detection Image Understanding

Image Stitch Image Processing and Formation

Texture Synthesis Image Processing and Formation

application and five distinct input data sets per configu-

ration. Moreover, both MATLAB and C versions for the

SD-VBS suite have been provided. SD-VBS is available at

http://parallel.ucsd.edu/vision.

A. Design Philosophy

Applications within the SD-VBS suite were selected across

the broader spectrum of vision algorithms, and strive to

include the most frequently used kernels in computer vision

area. These applications range from traditional algorithms to

more up-to-date algorithms, and from stand-alone applications

to base modules for bigger applications. We have chosen

representative applications from each of the following vision

concentration areas: Image Processing and Formation; Image

Analysis; Image Understanding; and Motion, Tracking and

Stereo Vision. This suite comprises code for vision modules,

including Disparity Map, Feature Tracking, Image Segmenta-

tion, Scale Invariant Feature Transform (SIFT), Support Vector

Machines (SVM), Robot Localization, Face Detection, Image

Stitch, and Texture Synthesis. The kernels range from the basic

operations such as convolution filters and area sum to the more

complex Adaboost [5].

Table I summarizes the classification of each of the bench-

mark under the concentration area they represent. Every con-

centration area has two or three benchmarks associated with

it and each benchmark is chosen such that it is one of the key

representatives of the area. The breadth of the SD-VBS suite

is apparent from the concentration areas it targets, while depth

is created by the relative self-sufficiency of the individual

benchmarks.

B. Applications

Currently SD-VBS comprises nine applications: Disparity

Map, Feature Tracking, Image Segmentation, Scale Invariant

Feature Transform (SIFT), Support Vector Machines (SVM),

Robot Localization, Face Recognition, Image Stitch, and Tex-

ture Synthesis.

Table II gives a brief description of each benchmark and

the application they target.

• Disparity Map [6]: Given a pair of stereo images for

a scene, taken from slightly different positions, the dis-

parity map algorithm computes the depth information

2
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Fig. 1. Decomposition of the Vision Benchmarks into their major kernels. Each benchmark is listed at the top of the figure, and each benchmark’s major
kernels are listed directly underneath. An arrow is used to indicate cases where kernels are shared between applications.

TABLE II
BRIEF DESCRIPTION OF SD-VBS BENCHMARKS

Benchmark Description Characteristica Application Domain

Disparity Map Compute depth information using dense stereo Data intensive Robot vision for Adaptive
Cruise Control, Stereo Vi-
sion

Feature Tracking Extract motion from a sequence of images Data intensive Robot vision for Tracking

Image Segmentation Dividing an image into conceptual regions Computationally intensive Medical imaging, computa-
tional photography

SIFT Extract invariant features from distorted images Computationally intensive Object recognition

Robot Localization Detect location based on environment Computationally intensive Robotics

SVM Supervised learning method for classification Computationally intensive Machine learning

Face Detection Identify Faces in an Image Computationally intensive Video Surveillance, Image
Database Management

Image Stitch Stitch overlapping images using feature based align-
ment and matching

Data and computationally
intensive

Computational photography

Texture Synthesis Construct a large digital image from a smaller por-
tion by utilizing features of its structural content

Computationally intensive Computational photography
and movie making

a We employ the term “data intensive” to characterize codes with repetitive low-intensive arithmetic operations across a very fine level data
granularity. We employ the term “computationally intensive” to refer to those codes that are less predictable and perform more complex
mathematical operations on a potentially more unstructured data set.

for objects jointly represented in the two pictures. The

depth information in a scene gives clarity about relative

positions of objects in the scene. Robot vision systems

use Disparity Map extensively to compute the depth

information, which is useful in applications such as cruise

control [7], pedestrian tracking, and collision control.

The implementation is based on Stereopsis [6], also

known as Depth Perception. Given a stereo image pair,

the disparity algorithm computes dense disparity. Dense

disparity operates on every pixel of the image (fine

level data granularity) unlike sparse disparity where depth

information is computed on features of interest. Figure I

shows the constituent kernels of the disparity module:

filtering, correlation, calculation of sum of squared dif-

ferences (SSD) and sorting. For better cache locality,

the 2-D filtering operation was implemented as two 1-D

filters. Correlation and SSD are computed on every pixel

across the image, making them expensive data intensive

operations.

The code size is small compared to other benchmarks in

SD-VBS, but the number of operations on fine grained

pixel data is enormous for dense disparity. From a pro-
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grammer’s point of view, disparity has program charac-

teristics such as regular and prefetch-friendly memory

accesses and predictable working set. In conclusion,

disparity is a parallelization-friendly algorithm whose

performance is only limited by the ability to pull the data

into the chip.

• Feature Tracking [8]: Tracking is the process of extract-

ing motion information from a sequence of images. This

involves feature extraction [9] and a linear solver that

calculates the movement of features. This application is

widely used in robotic vision and automotive domain for

real-time vehicle or feature tracking.

SD-VBS implements the Kanade Lucas Tomasi (KLT)

tracking algorithm [8] for feature tracking. The algorithm

comprises of three major computation phases: image

processing, feature extraction and feature tracking. The

image processing phase involves noise filtering, gradient

image and image pyramid computations, which operate

on pixel level granularity. The core of the algorithm

– feature extraction and tracking – operates on coarse

grained data, which is identified by the features.

The working set varies significantly across the major

computation blocks. While image processing operates on

the entire image, the operations are restricted to Multiply-

and-Accumulate (MAC) making it a data intensive phase

of the application, yet parallelization-friendly. The feature

extraction and tracking kernels operate on feature level

granularity and the code is complicated by complex

matrix operations such as matrix inversion and motion

vector estimation, making it computationally intensive

and making exploitation of innate parallleism more chal-

lenging.

• Image Segmentation [10]: Image Segmentation refers to

the process of partitioning a digital image into conceptual

regions. Segmentation is typically used in finding objects

of interest such as boundaries, object characteristics. Each

segment that is described by the algorithm comprises

a set of pixels that share certain desirable characteris-

tics. Image segmentation finds applications in medical

imaging, face and fingerprint recognition, machine vision,

computational photography etc.

The algorithm implemented in SD-VBS can be divided

into three sub tasks: construction of a similarity matrix,

computation of discrete regions, and normalized segmen-

tation. The similarity matrix is computed by analyzing

pixel-pixel pairs. Based on this, we compute regions

or classes of an image. Repetitive operations on pixel

granularity make this phase a good candidate for the

exploitation of ILP on fine granularity and DLP (data

level parallelism) across iterations.

The segmentation kernel involves discretization, complex

arithmetic and matrix computations, all of which operate

on a pixel level granularity. Overall, this application

involves complex operations across fine granularity, thus

making it compute intensive application.

• SIFT [11]: The Scale Invariant Feature Transform (SIFT)

algorithm is used to detect and describe robust and highly

distinctive features in images. Extraction of robust image

features that are invariant to scaling, rotation and noise

finds wide applicability in domains such as object recog-

nition, image stitching, 3D modeling, video tracking. A

very interesting and desired feature of SIFT descriptors

is its robustness to partial occlusions, which makes it

a pervasive algorithm for navigation and match moving

applications.

SIFT implements David Lowe’s Scale Invariant Feature

Transform algorithm in the SD-VBS. This algorithm

computes keypoints (or features) and their descriptors

given a gray scale image. The key kernels of the algo-

rithm comprise image processing, keypoint detection and

feature descriptor computation. The preprocessing stage

of SIFT involves filtering operations in addition to a data-

compute intensive linear interpolation phase (upsampling

to extract anti-alias image). The detection of keypoint

phase involves creation and pruning of the Difference

of Gaussian (DOG) Pyramids. Creation of the DOG is

data intensive while feature extraction is computationally

intensive. The descriptor computation kernel employs

histogram binning to assign orientations to feature points.

This phase operates on “feature-level” granularity and has

heavy computations.

The image processing and DOG creation phase are

characterized by regular prefetch-friendly memory ac-

cess pattern and predictable working set. Identification

of keypoints and descriptor assignment is plagued by

irregular memory pattern and intensive computations. An

interesting point to note here is that the irregular memory

access can be hidden by the intensive computations,

suggesting that we could in fact extract fine-grained

parallelism.

• Robot Localization [12]: Robot Localization estimates

the position of a robot relative to its environment based

on sensor data. It is one of the fundamental problems of

mobile robotics and is the key component in autonomous

robot systems.

This problem can be divided into two sub-tasks: global

position estimation and local position tracking. Global

position estimation is the ability to determine the robot’s

position in an a priori or previously learned map, given

no other information than that the robot is somewhere on

the map. Once a robot has been localized in the map,

local tracking is the problem of keeping track of that

position over time. The SD-VBS suite implements the

Monte Carlo Localization algorithm (MCL). The MCL

algorithm is a particle filter combined with probabilistic

models of robot perception and motion.

The kernels used in the application are particle filters and

physical modeling. These kernels utilize trigonometric

functions and thus make heavy utilization of floating

point engines. The kernels operate at the granularity

of positions. The irregularity in data access patterns

and intense computations make localization a compute-
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intensive application.

• SVM [13]: Support Vector Machines are a supervised

learning method used for data classification. Given a set

of data points and training data, SVM optimally separates

the data into two categories with maximal geometric

margin. SVMs are closely related to neural networks

and belong to a family of generalized linear classifiers.

Applications in machine learning employ SVM data

classification extensively.

The SVM benchmark in SD-VBS uses the iterative inte-

rior point method to find the solution of the Karush Kuhn

Tucker conditions of the primal and dual problems [14].

The algorithm can be broadly classified into two phases:

training and classification. Both these phases involve

heavy polynomial functions and matrix operations. The

non-deterministic nature of access pattern makes it dif-

ficult to classify SVM as either fine grained or coarse

grained parallelism.

• Face Detection [15]: The Face Detection algorithm

determines the locations and sizes of human faces in

digital images. This algorithm can be regarded as a

specific case of object-class detection. Face detection is

used extensively in biometrics, video surveillance, human

computer interface and image database management.

The SD-VBS suite employs the Viola Jones Face De-

tection algorithm. This algorithm can be divided into

three components: extract faces, extract face sequence and

stabilize face windows. Kernel “extract faces” does image

preprocessing and also extracts features. The granularity

of these operations is pixel-level and the computations

performed are complex. After this phase, the granularity

changes to feature level and at this point, the memory

accesses become irregular and unpredictable.

We classify face detection as compute intensive due to

its “feature-based” approach.

• Image Stitching [16]: Image stitching or photo stitching

is the process of combining multiple photographic images

with overlapping fields of view to produce a segmented

panorama or high-resolution image. It is also known as

mosaicing. Image stitching has applications in computa-

tional photography and movie making.

Extraction of overlapping regions between images forms

the basis for image stitch. The implementation of stitch

algorithm is classified into four broad categories: image

calibration and registration, feature extraction, feature

matching and image blending. The image calibration

phase involves filtering operations to process the image

for the sensitive feature extraction phase. As discussed

earlier, calibration is data intensive and can be exploited

by fine grained parallelism.

The feature extraction kernel involves preprocessing and

feature selection. The preprocessing phase of the fea-

ture extraction kernel employs gradient filters on pixel-

level granularity. The feature selection (ANMS kernel) is

coarse grained as it operates on features rather than pixels.

The regularity in access patterns breaks here and the stitch

application enters the realm of heavy computations on

irregular data points.

The feature matching stage of the algorithm identifies

exact overlap between a pair of images (intensive search)

based on features. SD-VBSsuite uses the RANSAC [17]

algorithm for the purpose of image matching. This al-

gorithm is iterative, heavily computational and accesses

data points randomly. Image blending also counts among

computationally intensive kernels owing to heavy trans-

form and image alignment operations.

The image stitch algorithm is a classic example of a

benchmark that has potential for all three types of par-

allelism: Instruction, Data and Thread Level parallelism

(ILP, DLP and TLP). The filtering kernels and image

transform operations have a good degree of ILP, whereas

the feature point based computations in extraction and

blending kernels are TLP sections. The iterative nature

of the algorithm adds data level parallelism. Thus, we

will classify stitch as both data and compute intensive

application.

• Texture Synthesis [18]: Texture synthesis is the process

of constructing a large digital image from a smaller

portion by utilizing some features of its structural content.

It finds application in computational photography, digital

image editing, 3D computer graphics and movie making.

For the SD-VBS application, we are using the

Portilla-Simoncelli implementation of texture analy-

sis/synthesis [19]. The algorithm can be divided into

three major parts: image calibration, texture analysis and

texture synthesis.

Image calibration has been discussed extensively in the

above benchmarks. The other two kernels - analysis

and synthesis, employ complex matrix, arithmetic, and

trigonometric operations iteratively. These computations

are performed on pixel granularity for the entire working

set making heavy use of memory.

The texture synthesis algorithm is an interesting example

of TLP, where each thread exploits ILP due to complex

operations hiding memory latency. We classify texture

synthesis as compute-intensive application.

III. EVALUATION

A. Methodology

In the following sections, we profile the SD-VBS bench-

mark codes in order to analyze the relative contributions of

the kernels to their respective vision applications. In addition

to identifying the hot-spots for each benchmark, we provide

detailed program characteristics and their effect on access

patterns, parallelism and program speed-up.

The data was gathered on a Linux system whose character-

istics are specified in Table III.

For all benchmarks we have used multiple input data sizes.

The data sizes used are SQCIF (128x96), QCIF (176x144) and

CIF (352x288). QCIF is roughly 2x larger than SQCIF, and

CIF is roughly 2x larger than QCIF.
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TABLE III
CONFIGURATION OF PROFILING SYSTEM

Feature Description

Operating System Linux 2.6.18-8.1.10.el5
Processors Intel Xeon 2.2 GHz
L1 cache 8 KB, 4-way set associative, write back
L2 cache 512 KB, 8-way set associative
Memory 6 GB, 6 banks, DDR 200MHz Synchronous

Front Side Bus 400MHz

B. Hot Spot Evaluation

We measured the performance of the nine SD-VBS bench-

marks across different input sizes and image types. Our analy-

sis for SD-VBS has been profiled across 65 variants of the SD-

VBS test vectors. Figure 3 summarizes the profiling results for

each of the benchmarks. The figures show the code coverage of

kernels across different input image sizes. Table IV attempts

to characterize the characteristics of the parallelism in each

kernel. We classify kernels based on the type of parallelism

they exhibit and then present the results of a dynamic critical

path analysis, similar to that found in [20], that attempts to

approximate the potential amount of intrinsic parallelism in

the application. This parallelism figure corresponds roughly

to the speedup possible on a dataflow machine with infinite

hardware resources and free communication.

We loosely categorize parallelism into Instruction Level

Parallelism (ILP), Data Level Parallelism (DLP) and Thread

Level Parallelism (TLP). We define ILP as fine-grained par-

allelism that can be exploited across a basic block. DLP

loops are frequently vector operations across a huge data set.

DLP loops are typically characterized by simple and repetitive

computations with predictable data access patterns. Inter-

iteration dependence may or may not exist. TLP is defined as

the parallelism that is achieved when two or more independent

complex tasks could be scheduled simultaneously. TLP code is

usually harder to extract parallelism from, because of irregular

data access patterns and the issue of memory dependences.

Inter-thread dependence may or may not exist. A DLP loop

can be converted into TLP but vice versa is not true.

• Disparity Map: Figure 3 and Table IV summarize the

characteristics of the benchmark. As explained earlier,

disparity is data-intensive application that operates on

pixel granularity. This observation is portrayed by the

scaling of the execution time with input image size

in Fig 2. Integral image is an interesting kernel that

witnesses negative slope with increasing working set size.

This can be attributed to the existence of high amount of

thread level parallelism within the kernel. Regular mem-

ory access, predictable working set and iterative nature of

the DLP computations make disparity an ideal candidate

for parallelism. The hierarchical parallelism that exists

among kernel – inter-kernel TLP, intra-kernel DLP and

ILP within each strand (or iteration) – is responsible for

the high levels of parallelism indicated by Table IV.

• Feature Tracking: Figure 3 shows that the majority of

program occupancy is taken by Gaussian Filter, Gradient

and Integral Image kernels (refer to Fig 3). Also, being a

data intensive benchmark, the kernels scale with increase

in working set size with exceptions in the Integral Image

and Matrix Inversion kernels. The Integral image kernel

profits from the high amount of TLP within the kernel and

strong ILP presence in its individual strands. The Matrix

inversion kernel comprises transpose and matrix multiply

operations. The former has high DLP parallelism and the

latter has high ILP. Together, these favor matrix inversion

operation. This claim can be verified from the summary

of Table IV.

The preprocessing and feature extraction kernels com-

prise 55% of the execution time, whereas kernels such

as feature tracking occupy less than 30% of the program

time.

• Image Segmentation: For the segmentation benchmark,

we generated profiling numbers based on input sizes and

also number of segments for each input image size. For

fixed number of segments, the relative performance of

SQCIF, QCIF and CIF image sizes are similar.

Image segmentation is a compute intensive benchmark

with complex matrix operations across the working set.

The majority of program time is occupied by the com-

putation of similarity matrix kernel, which is a classic

candidate for ILP. Lack of DLP scenario affects the

overall parallelism of the benchmark. The compute in-

tensive nature of the benchmark is well captured by

Figure 3, where the occupancy of individual kernels

remain constant across various image sizes.

As we increase the number of segments per image size,

the execution time varies linearly. Thus, we conclude

that segmentation is constrained by the number of image

segments and not by the image size.

• SIFT: This benchmark operates on feature granularity

and uses complex computational resources. The prepro-

cessing stage involving filter operations and convolutions

exhibit ILP and DLP. Kernels such as Interpolation, SIFT

(that includes corner detection, feature extraction) exhibit

ILP due to intense computation and irregular memory

patterns.

The majority of run-time is occupied by interpolation

and SIFT kernels. These together account to 65% of the

execution. Integral image and pre-processing constitute

17%. As expalined in the earlier benchmarks, the integral

image kernel is high in TLP content, thus scaling across

input sizes does not scale the percentage occupancy of

this kernel. This behavior of the benchmark is well

captured by Figure 2.

The computation intensive nature of SIFT is well captured

by Figure 3, which shows that the percentage occupancy

of kernels does not vary with the change in input size

though the run-time of the benchmark scales with input

size.

• Robot Localization: In this benchmark, the run time
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depends on the data set that is provided to the program.

Each data point refers to the location co-ordinates. And

depending on the nature of the data point, a particular

motion model (or function) is invoked. Each model is

comprised of different set of functions and thus, the run-

time of the algorithm cannot be classified based on the

input size. This is reflected in Figure 3 and Figure 2,

where the increase in input size does not scale the

execution time accordingly.

The major hot spot for this benchmark is the weighted

sample function, which contributes to 50% of the exe-

cution time. This is the Sampling kernel of Localization

benchmark. The other 50% of the time is spent in Particle

Filter kernel of the application. Both these kernels use

complex mathematical operations such as trigonometric

functions, square root thus making heavy utilization of

floating point engines.

• SVM: This benchmark is a compute intensive application

that performs various matrix operations that dominate

most of the execution time. This application involves ex-

amining and learning from a training set. Functions such

as finding the polynomial fit, matrix operations, account

for more than 50% of the execution time. These functions

belong to Matrix Ops kernel of SVM application. The

learning and training functions take up more than 30%

of the program time and these fall under the Learning

kernel.

Due to the irregularity and randomness of working set,

we cannot classify the kernels of SVM as DLP. But the

iterative nature of the algorithm and complex computa-

tions that can hide the memory latency make SVM a good

candidate for ILP and TLP exploitation. For the working

set size of 500x64x4 and two iterations, Table IV shows

expected speed up numbers for each kernel. The training

kernel, which classifies the data points into two groups,

projects higher parallelism than the learning kernel. For

greater number of iterations on learning method (thus

improving the quality of SVM), the overall parallelism

of the learning kernel would scale up accordingly due to

the scope of TLP across iterations.

• Image Stitch: Image stitch is an interesting application

that involves the iterative non-deterministic RANSAC

algorithm. This algorithm performs feature based image

mosaic and thus, the execution time varies with the input

image size and also the quality of the image. For smaller

images, the number of distinct features are fewer and this

limits the quality of the synthesized image and also the

run time is small.

Figure 3 shows the percentage occupancy of kernels and

Figure 2 portrays the scaling contour of the benchmark

with input sizes. The image calibration and feature extrac-

tion kernels occupy more than 50% of the program time.

These kernels involve filtering and matrix operations on

pixel granularity. This feature makes them parallelism

friendly, which is evident from the high speed up number

from Table IV.

Kernels such as feature matching and image blending

do not show promising speed up numbers because they

operate on coarse granularity and they are limited by

irregular data patterns and low DLP, TLP content. Thus,

the expected parallelism for these kernels is not as high

as calibration and extraction.

As mentioned earlier, the stitch application is sensitive

to the quality of the image. For the purpose of Fig-

ure 3 ,we generated the SQCIF and QCIF images by

down-sampling the CIF image using averaging filters.

This operation compromised the sharpness of the down-

sampled images and resulted in ”low-featured” images.

The consequence of this well captured by Figure 3 where

the kernels for feature extraction and blending (LS Solver

and SVD) fail to occupy any time due to the lack of robust

features.

• Texture Synthesis: In this benchmark, we classify our

test images based on the texture. We divide them into

two classes - stochastic and structural. The execution time

for all the image types is almost similar due to the fixed

number of iterations for synthesizing each image. To get

better insight, we profiled the benchmark with varying

iteration count and output image size. The execution time

across each image set does not vary linearly with the input

size. Major hot-spots include texture analysis, kurtosis

and texture synthesis that account to more than 60% of

the execution time. From Figure 3, these appear under the

Sampling kernel. The Matrix operations kernel occupies

30% of the program execution time. These functions are

intensive computationally and operate on features level

granularity.

IV. RELATED WORK

A variety of researchers in industry and academia have

pulled together a number of vision-related code corpuses.

Perhaps the most noted and widely used benchmark suite is

Intel OpenCV [21]. OpenCV is a highly-tuned library of vision

primitives that was originally targeted for Intel x86 specific

libraries.

Although a benchmark suite could presumably be assembled

around OpenCV, its main disadvantages come from the exten-

sive degree of hand-tuning that has been applied to OpenCV,

which reduces its clarity significantly and subsequently makes

it extremely difficult to analyze, transform, and parallelize, for

which SD-VBS was explicitly created. The use of OpenCV in

the authors’ early architecture research efforts was the primary

motivation for creating SD-VBS.

While OpenCV library is likely the broadest example of

a corpus of vision code, there are other existing benchmark

suites which target related domains, such as MediaBench [22].

Mediabench focuses on compression, encryption, encoding

and communication algorithms. The Spec2000 [23] benchmark

suite includes facerec, a face recognition algorithm.

Several benchmark suites exist not to characterize perfor-

mance aspects of vision systems but rather their accuracy,
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Fig. 3. Benchmark hot spots. The X-axis shows the relative input sizes. ’1’ refers to a SQCIF (128x96) image, ’2’ refers to a QCIF (176x144) image and
’4’ is a CIF image (352x288). The Y-axis represents the percentage occupancy of individual kernels. This figure captures the change in kernel occupancy as
the input image sizes are scaled up. The nature of the variation slope characterizes the kernel property - data or compute intensive, along with the type of
exploitable parallelism.
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Fig. 2. Effect of data granularity on execution time. The X-axis shows
the relative increase in the input size. The Y-axis shows the increase in
the execution time. The graph captures the characteristic of the benchmark-
programs that scale according to the input size are data-intensive and operate
on fine granularity. Whereas those that are resistant to input size variation
but are affected by the nature of the data are classified compute-intensive and
must be parallelized with a coarser granularity.

including the Berkeley Segmentation Dataset and Bench-

mark [24], PEIPA [25], MUSCLE [26], and ImageCLEF [27].

V. SD-VBS USAGE

SD-VBS’s balance between code cleanliness and perfor-

mance is particularly useful in the multicore era, where a num-

ber of competing approaches have emerged for programming

multicore processors, including transactions [28], shared mem-

ory, message passing, scalar operand networks [29], parallel

languages [30], and others. For the purposes of comparison,

the intent is that researchers should not change the algorithm

but are permitted to restructure the code to suit their machines.

When publishing data, users should also place on the Internet

a diff of their benchmark code from the original.

VI. CONCLUSION

In this paper we have presented SD-VBS, a benchmark

suite for computer vision, which is targeted toward researchers

designing next-generation multi-, many- core and special-

purpose systems, languages, and compilers.

The MATLAB and clean C implementations are intended to

facilitate understanding and transformation of the code, both

manual and automatically. We provide a spectrum of inputs

to control simulation time, and to facilitate understanding the

scaling of the algorithm. We hope that the benchmark suite will

prove useful to compiler, architecture, and vision researchers

alike, and help bring vision applications to “real-time” or to

“super real-time.”
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Benchmark Kernel
Parallelism

Amount Type

Disparity Correlation 502x TLP

Integral Image 160x TLP

Sort 1,700x DLP

SSD 1,800x DLP

Tracking Gradient 71x ILP

Gaussian Filter 637x DLP

Integral Image 1,050x TLP

Area Sum 425x TLP

Matrix Inversion 171,000x DLP

SIFT SIFT 180x TLP

Interpolation 502x TLP

Integral Image 16,000x TLP

Stitch LS Solver 20,900x TLP

SVD 12,300x TLP

Convolution 4,500x DLP

SVM Matrix Ops 1000x DLP

Learning 851x ILP

Conjugate Matrix 502x TLP

TABLE IV
Parallelism across benchmarks and kernels THIS TABLE SHOWS THE

PARALLELISM ESTIMATED BY A CRITICAL PATH ANALYSIS [20] IN THE

VISION BENCHMARK SUITE. WHEN POSSIBLE, WE USED THE SMALLEST

INPUT SIZE FOR THAT BENCHMARK, AND YET THERE ARE LARGE

AMOUNTS OF INHERENT PARALLELISM.
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